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Summary

The paper deals with the problems connected with model building for popular types
of designed experiments. The one- and two-factor experiments carried out in design
with one or more blocking systems are taken into account only. .

A block design, a nested block design, a row-column design, and a block design with
nested rows and columns are considered for one-factor experiments. For two-factor
experiments a classic two- (many-) factorial design, a split-plot and split-block design
are considered only. The former designs include the incomplete, complete and over
complete cases of that designs.

Model building is based on some assumptions connacted with the experimental unit,
its properties and scheme of randomization used in the experiment.

In particular, it is assumed that the observed response is a sum of three
components: a conceptual response connected with an experimental unit, a pure effect
due to treatment (combination) and a technical effect connected with measurements. It
means that additivity among these three components is also assumed.

Special attention is paid to validity, with respect to the randomization point of view,
of linear model assumptions adopted in many applications.

The paper is the survey paper where research done by the author in the considered
area is reported.

1. Introduction

The experiment is an important tool of research in natural sciences. Hence,
planning, modelling and inference problems are of fundamental importance for
every experimenter using experiments in his research work.

There are, in practice, two main approaches to the model building of a linear
model of observations. In the first approach we assume a’priori a form of the
linear model, usually before performing the experiment. The linear model and
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tures, factorial experiments.
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its dispersion structure are assumed to be independent of the type of experiment
and the structure of the experimental material. Sometimes some additional
assumptions concerning dispersion structure (correlation, auto correlation) are
added. The problem is how to check these assumptions. Usually, the amount of
data necessary to verify the assumptions, is beyond the ability of the ex-
perimenter to collect them.

In the second approach, the model is strictly connected with a given experi-
ment, i.e. with the structure of its experimental material and with the method
of assigning treatments to the units, the so-called scheme of randomization. This
procedure should be worked out separately for every type of the experiment
considered.

In this paper we present several different schemes of randomizations for the
most commonly used types of designs, i.e. a block design, a nested block design,
a row-column design, a classic two-factor design, a split-plot design and a split-
block design.

The main purpose of the paper is to illustrate a more objective procedure for
derivation (definition) of the model. The emphasis is directed to the experimental
situation and to the design. In our considerations the process of randomization
plays a central role.

At the beginning let us consider the factors which have an influence on the
value of the observed data (also called observed response, observed yield). Let
us consider more exactly these factors in some areas of natural science.

Let us begin with an agricultural field experiment. In this kind of experiment
the plot usually constitutes an experimental unit. An observed datum is then
often called an observed yield. Such terminology is very helpful for understanding
the considered ideas.

Note that every unit possesses some kind of fertility which gives some yield
in the case when treatments do not occur on a unit and in the case in which no
treatments have an effect on the yield. This yield will be called zero yield
(conceptual response). The increase (or decrease) in zero yield due to the treat-
ment used on the experimental unit will be called pure effect (due to treatment).
We have a similar situation in biological (and some agricultural) experiments in
which an animal (or a set of animals) constitutes an experimental unit. Then,
analogous to fertility is the so called vitality or resistance, or immunity (it
depends on what kind of properties of a body are taken into account).

Suppose we are interested in investigating the influence of some additional
levels of vitamins or drugs on some body characteristics. These characteristics
are natural properties of the organism. The body characteristic resulting from
these natural properties of the organism is called conceptual response. The
additional levels of vitamin (treatments) can increase (or decrease) the conceptual
response. Hence, the increase (or decrease) of the conceptual response caused by
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the treatment applied on a given unit (animal or a set of animals) will be called
pure effect (due to treatment).

We have quite a similar situation in some medical experiments.

Usually the sum of zero yield (conceptual response) and pure effect due to
treatment is called the pure yield (pure response) and is often the base of the
statistical analysis.

Let us note that when observing the response of the unit in reality, any
observation may be affected by a "technical error", (artifact) an error due to some
technical inaccuracy in performing the experiment and due to some error con-
nected with measurements of the response (data). This error is also called
measurement error (cf. Neyman et al., 1935).

The properties of the random variable representing measurement error are
strictly connected with the measurements. It means that the assumption that
there is no systematic error implies 0 as the expected value. Moreover, inde-
pendence of measurements - implies that all covariances are 0 while all variances
are equal to 02, where o is the common variance for all units (resulting from
using the same methods of obtaining data). Hence, we assume that the technical
errors, denoted by ¢, are independent variables, all with the same expected value
e.qual to 0 and with the same variance o”. Also, we assume that technical errors
are independent of the other random terms of a linear model.

In this paper, the so called comparative experiments are taken into account.
The purpose of such an experiment is to discover whether the treatment has an
effect and how great it is, as compared with some others treatments, often the
standard (control) ones.

Let us note that in natural science experiments the most important thing is
to eliminate, as far as possible, a heterogeneity of experimental material. In field
experiments it may be possible to find or to prepare a homogeneous set of parcels
(plots). However, in biological and medical experiments the situation is more
complex. In medical experiments, where the patients are units, the patients are
not all alike, nor are physicians, hospitals or communities. Moreover, under the
most carefully controlled conditions, patients do as they please. Also, the psSy-
chological conditions which are practically impossible to eliminate are very
important. Hence, as we will see later, the randomization of units is of great
importance in such cases.

The starting point of our considerations is some theoretical (master) plan of
the experiment. In this plan, say D , we take into account all the experimenter’s
suggestions concerning the statistical properties of design and the experimental

conditions. It means that plan D will not be chosen at random.

The basic problem worked out here, is the way of assigning plan 2 to a given
experimental material. This is defined by the scheme of randomization which

describes how to assign the theoretical units of plan D (with their treatments)
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to the experimental plots. In our considerations the treatments will not be
randomized.

Randomization plays the main role in our considerations. We assume that we
have no problems with performing it. For example, in medical experiments
(clinical trials) there are many ethical and psychological problems connected with
randomization of the patients (see for example, Meier, 1975; Maike and Stanley,
1982; Gehan, 1987). .

Suppose that the randomization is performed as described by Nelder (1954)
by randomly permuting, for example for block design, blocks within their total
area and by randomly permuting units within blocks.

It will be assumed that the treatments under consideration are homogeneous
(or additive) in the sense that the variation of the response among the available
experimental units does not depend on the treatment received (cf. Kempthorne
1952; Nelder, 1965, p.168; White, 1975, p.560; Bailey, 1981).

In model building the so called conceptual response of the unit will be used.
This response may be obtained in an experiment in which all units receive the
same treatment, no matter which one, that will be called the "null" treatment.
This conceptual response of a unit will be denoted by m (with some indices).
The dot convention will be used to denote the means. Throughout this paper the
number of treatments will be denoted by v.

The property of the random variables §;, i =1,2,...,n, that they are mutually
uncorrelated and independently distributed with expected value equal to @ and
variance equal to b, will be denoted as §; ~ (a,b).

2. Block designs

2.0. Introduction

Let us assume that the population of experimental units has a nested struc-
ture i.e. let it be divided into some number of blocks and then let blocks be divided
into units. The number of blocks and block size will be characterized exactly in
the cases considered.

Let m;, stand for a conceptual response of the ¢-th unit within the i-th block
before randomization (it means that the first subscript denotes the number of
block and the second one — the number of unit).

The scheme of randomization can be characterized by some zero-one dummy
variables (cf. Kempthorne, 1952). These variables are described exactly for block
designs only. The generalization of these variables to a more complicated struc-
ture of experimental material and more complicated scheme of randomization is
not especially difficult, whilst calculations connected with their statistical proper-
ties can be more complicated. In the paper these calculations are omitted but
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the meaning of the parameters will be given. This is very important in a further
inference from an experiment.

2.1. Case A

Let us assume that a population of experimental units (potential population
of units) comprises & blocks of sizes K, K,,...,K}, units, respectively.

Let the chosen theoretical plan P utilize b blocks of sizes ki, ko,...ky
respectively, k; < K;, i1=1,2,...,b.
The treatments will be arranged on experimental material in the following

way: 1) blocks of experimental material are assigned to the blocks of plan D
arbitrarily (not random), ii) units within each experimental block are assigned

at random to the units of theoretical plan D; all the b randomizations are
independent.

The above described scheme of randomization can be characterized by the
following dummy variable: djz is equal to 1, if within the i-th block the #th unit
of experimental material is assigned to the j-th unit of plan D; otherwise dji
is equal to 0, (note that blocks are not randomized and hence experimental blocks
and theoretical blocks of plan D can be identified by the same subscript z).

The conceptual response of the j-th unit of the i-th block after randomization
is equal to Y; = Z, oljj m;;, while under identity m; = m; + (m; - m;) is equal to
Yj=w+my j=12,..k, where w;=m; denotes the mean of the i-th block,
M; denotes the random effect of the j-th unit in the i-th block ie.,
ny = Z;dj (my, - m;.).

According to the approach described previously, the linear model of observed
response can be expressed as:

Vi) =M+ Bit Vi + g+ ey, Elyiie) = w+ B + v 1
1=12,....b j=12,...k;, s=12,...v,

where p = m. denotes the general mean, p,;=m;-m. — the fixed effect of the
i-th block, yj, — the effect of the s-th treatment (assigned to the j-th unit). The
covariance structure of model (1) has the form

o 2 ey Y]
0, +0°, =, =y,

Cov( ¥y Yijw) = (- - 1y'02 , i=i!, jaf', @)

0, otherwise,

where 0,2,_ =K,-“12t (my — m;.)* denotes the unit variance within the i-th block,
= LB o der
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Particular cases.

1° k;=K;, i=12,..,b.

This means that in a considered case the whole population of units within
blocks takes part. This case is applicable in a very broad class of agricultural,
medical and biological problems. However, there are some problems with statis-
tical analysis of model (1) on (2). There are some problems with estimation and
testing hypotheses. Some additional assumptions are needed.

2° K; —»w, o2=05, i=12,.,b.

This case leads to the following covariance structure of model (1):
Cov(¥ije) » Yijiis)) = 0,2l +a? if i=i' , J=J', and otherwise 0.

The obtained linear fixed model is a basic model of the so called intra-block
analysis of experiments carried out in block designs (cf. Pearce, 1983).

Before applying this model, the assumptions under which this model is ade-
quate, have to be checked, that is: i) experiment units within blocks compose a
random sample drawn from an infinite population of such units, ii) the variances
of units within all blocks are the same, iii) complete additivity between treat-
ments and units holds.

Note that these assumptions are very restrictive and usually impossible to
assert in practice.

2.2. Case B

Let us assume that a population of units is divided into B blocks of sizes K
units.

Let the chosen theoretical plan D utilize only & blocks of sizes k;, k,,...,k,
units, k; <K, 1=1,2,...,b.

The scheme of randomization is as follows: i) from the experimental material
we draw at random one block for the i-th block of plan D , ii) in the chosen
experimental block we draw at random £; units, (to the k; theoretical units of
plan D), on which we allocate the treatments. This procedure is repeated for all
blocks of plan D.

The scheme of randomization may be characterized by the following random
variables: /;, is equal to 1, if i-th block after randomization receives the number
w (or if the i-th block of plan D gets number w of the experimental material);
otherwise [;, is equal to O, f}-;w is equal to 1, if the j-th unit within the i-th
block receives the number p in the w-th block (or if the j-th unit of the i-th block
of the plan D gets number p of the w-th block of the experimental material);
otherwise }%w is equal to 0.
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The conceptual response m,,, before randomization may be written as follows:
Myp =M.+ (My. —m.) + (M, -m,,).

Adopting the similar method of obtaining a model as in case A, the observed
response can be expressed as:

Yije) =W+ Bi + Vi) t N+ &5 E(yis) = 1+ vjie) » 3)
1=12,..b, j=12..k, s=12,..0,
where now p; denotes the random effect of the i-th block, such that E@;) =0,
Var(p;) = og, Cov(B;,p;) = -(B - 1)_10§, LU= 2w b 0§ — block wvariance
of = B'Z(m,, - m.)%

The covariance structure of model (3) has the form

og + 0,2‘ +0?, . i=i', j=',
Cov(¥ijiey Vi) = {0f - K =102, i=i!, jui', 4)

-(B - 1)'10§, otherwise,

where o denotes variance of units, o2 = (BK) 'S3(m, - m. )2
n ) wp w

Let us note that in the considered case we do not demand units to be uniform
within all blocks. By randomization procedure we even expect, to some extent,
a possible heterogeneity of these units.

Particular cases.

1° B=b, k;=k=K.
This case is typical in agricultural, medical and biological experiments. It
means that in our experiments we utilize the whole available population of units.

2° B —»», K -,
The variance-covariance structure of model (8) has the form

og + 0,2] + 0%, i=i, =
Covyijw) = {of, i=t', j=', (5)
0, otherwise.

This is equivalent to the assumptions that p; ~ (0, 0‘23) and n; ~ (0, Oﬁ).

Model (3) with (5) is the linear model used in the so-called theory of recovery
of inter-block information (cf. Mejza, 1985a).

The theory presented above implies the necessity of fulfilling some assump-
tions for model (3) with (5) to be adequate, namely: i) the population of potential
blocks from which we randomly draw the blocks for an experiment should be
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infinite, ii) every block contains an infinite number of experimental units from
which we draw k; units, iii) additivity between treatment and unit holds.

For more details the reader is referred to the following articles: Mejza and
Mejza, (1989); Califiski and Kageyama, (1991). In the latter paper the situation
of Case B is considered where the population of blocks has unequal number of
units.

3. Nested block designs

3.0. Introduction

Let us assume that an experimental material has a double nested block
structure, i.e., let it be divided into one system of blocks, called superblocks, and
then let each superblock be divided into blocks and at last blocks be divided into
units. Such a situation is typical for the so-called a-resolvable block designs, i.e.,
designs in which treatments are assigned to the units so that each one of them
is replicated exactly a-times in each superblock.

In our consideration the property of resolvability plays no special role. Natu-
rally, the obtained linear model can be utilized in the analysis of the a-resolvable
block designs. '

Let m;j, denote the conceptual response of the p-th unit within the J-th block
of the i-th superblock (i.e., the'first subscript denotes number of superblock, the
second — block, and the third — unit).

3.1. Case A

Let us assume that the population of units is divided into R superblocks in
such a way that the i-th superblock contains b; blocks and let the size of the j-th

block of the i-th superblock be equal to Kij e o e AL

Let the master plan D be so that it utilizes k;; from K;; (k; < K;j) units. We
assume also that because of some reasons the superblocks and blocks within

superblocks of the plan D are assigned to the experimental ones in an arbitrary,
non random way. The scheme of randomization assigns (randomly) only the
theoretical units to the experimental units in every block of each superblock. We
randomize separately and independently in every block.

According to the structure of the experimental material and the scheme of
randomization the conceptual response can be expressed as follows:

Then, the observed response of the (i,/, £) unit can be expressed as:
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Yij(e) = W+ & + By + Vo) + Myir + €5t 5 B i) = 1+ 0 + By + Yy ()]

1= 1,2,...,R, J = 1,2,...,bi, t= 1,2,...,]3,:]' ,

where p=np., (w; = m;;.) denotes the mean of experiment, o; = y;. - .. denotes
the effect of the i-th superblock, Bij = u; — w;. denotes the effect of the j-th block
of the i-th superblock, n; and g;; denote the unit and measurement errors,

respectively.
The dispersion structure of model (8) has a form

2 2 A AR Fhe T
Op, + 0 1=t', j=J', t=t/,
Covijuep Yijre) = |-y =10y, i=il, joj', tet), M
()1 otherwise,

2 -1 2
where Onij = Kl.] Z(mup = m,j .

Particular case.

The observations can be considered uncorrelated. Some additional assump-
tions are needed for making analysis of variance possible (cf. particular case of

§ 3.1.). Many authors adopt in this case the classic fixed linear model, especially
to the a-resolvable block designs.

3.2. Case B

Let us assume that experimental units are divided into R superblocks and
the i-th superblock consists of B; blocks of sizes K;, i=1,2,...,R.

Let us also assume that the chosen master plan D utilizes R superblocks each
having b; blocks of sizes k; (< K;) respectively.

In the considered case we perform two-step randomization. The superblocks

of plan D are assigned to the experimental ones by natural, not random way,
whereas we assign in a random way the experimental blocks to the theoretical
ones within each superblock and similarly we treat the units within blocks.
According to the structure of the experimental material and the scheme of
randomization the conceptual response can be expressed as follows:
mips SIS (m,-p. = m,) <+ (mips —-Mm;p. ).
Then the observed response of the (i,j,t) unit can be expressed as:

Yijt(s) = W+ 0 + Byj + Yooy + Myt + €5ty B Vi) = W+ 0 + Yo ®

i=12,..R, j=12,..0b, t=12,.k ,
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where now f;; denotes the random effect of the j-th block of the i-th superblock.
The covariance structure of model (8) has the form

UE‘ + 0'72‘ + 0'2 ) i=i’, j=j’, t=tl,
0 =189 ..y Ry ’
op - (K;-1)"o; i=t), j5', t=t/,
Cov( Yijt(sy yi'j’t'(s)) = “ i 1 2 Q tad : T ©)
“(B; -'1) 9ps =ty J',
0, otherwise,

where ogi = B,le(m,-p. - m;.)? denotes the block variance within the i-th super-

block whereas 0,2“ = (BiKi)‘IZE(mips - mip.)2 denotes the unit variances within
the i-th superblocks.

Particular case

1) B; »», K;—>x, 0§;=0§’ 0,2“=0,2].

Such a situation is often used in practical applications. It is worth noting here
that assumptions about the equality of the variances are extremely restrictive.
3.3. Case C

Let us assume that experimental units are divided into R superblocks and
each of them is divided into B blocks of K units.

Let the chosen master plan D utilize r superblocks where the i-th superblock
contains b; blocks of sizes k;;, k;o,-..,ky , (sK), respectively.

We assume that in the considered case the three-step randomization is per-
formed, i.e., the randomization of the superblocks, randomization of blocks within
the superblocks and randomization of the units within blocks.

Now the conceptual response can be expressed as follows:
Mipps =M. + (M. = m.) + (My,. = my,.) + (M, - My,,,).

Then the observed response of the (z,/,t) unit can be expressed as:

Yijetsy = W+ 0 + By + ¥y + Mije + €t s E( Vi) = R+ Vi) 5 (10)

im12,.0, j=12,.0b; t=12.. .k,

where now additionally a; denotes the random effect of the i-th superblock.
The covariance structure of model (10) has the form

0(21 + og + 0,2‘ o s =L =l6 =1
o +op - (K-1)'0%, =i, jof', tet),

Cov( ¥y Vi) = 1 5 ({5 i (11)
Gu—(B_]-) Oﬁ’ =, Jj# ,

~(B~1tle, il
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where:

02 = R'3(my,. - m...)? denotes the superblock variance,
UE = (RB)'IZE(mhp. - mh..)2 denotes the block variance, whereas

0,2l = (RBK)'IZEZ(m;,p8 =Ty )? denotes the unit variance.

Particular cases

1) R— o, B -, K->, _

Such a situation is often used in practical applications also. It is the classic
linear mixed model applied for a-resolvable block design. An equivalent situation
is that in which it is assumed that o; ~ (0,0%), B;~ (0,05) and 1, ~ (0, o).

2)r=R, b;=b=B, kj=ky=... =ky =k.

The whole population of units takes part in an experiment.

For more details the reader is referred to the following papers: John (1987),
Mejza S. (1989), Mejza and Mejza (1989).

4. Row-column designs

Let us assume that experimental material is divided into orthogonally dis-
posed blocking systems, one called rows and the other called columns, each
intersection of row and column constitutes a unit.

Let K, and K, denote the number of rows and the number of columns and let
our master plan D utilize k; and k, from them respectively. By m,r we denote a

conceptual response of a unit being intersection of the p-th row and the f-th
column.

The conceptual response can be expressed as:
Mmper=m. +(m, -m.)+ (mp-m.)+ (myp—m,. - me+m.) .

Applying the above equality and using two independent randomizations, i.e.,
randomization of rows and randomization of columns, the observed response can
be written as:

Yijte) = W+ Y(S) + 0 + B+ my + g5, B i) = 1+ (5) 12)
1=12,...k, j=12,.. .k,
where o; (B;) denotes the random effect of the i-th ( J-th) row (column), n; and

¢;; denote the unit errors and technical errors, respectively.
The dispersion structure of model (12) is of a form
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Cov( ¥ijtsys Yijis) = (13)
o2+ 05+ 02+ 07, =t jo',
2 -1 2 1.2 T
¢ Oa_(KZ_]-) oﬁ'—(KZ_l) Oy s =, J=,
-, - 1)'o% + of - (& - 1) 'oh, i, j=j',

~(K-1) 02~ (Ky-1) "ot (K- 1) (Kp-1) 102, i,

where oi = KfIZ(mp. -m.)? denotes the row variance, 0‘2; = KZ'IZ(m.f -m.)?

denotes the column variance, 0,2] =Kj IKZ_IZZ(mp -Mm, —m.p+m. )? denotes the

unit variance.
Particular cases

Two particular cases are of great interest.

1) Kl —>00, Kz —>00,

In this case the observations can be treated as uncorrelated. The obtained
linear model is classic when we consider linear mixed model for row-column
designs. Often such assumptions are written in the form
a; ~ (0,02), B;~ (0,07 and ; ~ (0, 62).

2) kl = Kl’ k2 = Kz.

Such a situation we usually have in practical applications. Let us note that

in many textbooks the above randomization is recommended but then it is not

seriously taken into account. For more details the reader is referred to John
(1987).

5. Block designs with nested rows and columns

Let us assume that a population of experimental units (set of potential units)
is stratified into R superblocks so that each superblock is additionally divided
into two orthogonally arranged blocking systems, one called rows and the other
called columns, each intersection of a row and column constituting a unit.

Let K; denote the number of rows, and Ky — the number of columns in our

population of units. Let the chosen master plan D utilize r (sR) superblocks,
k1 (=K;) rows and kg (<K,) columns and let both of the numbers %; and k4 be the
same in all superblocks.

In the paper we consider a three-step randomization, i.e., randomization of
superblocks, randomization of rows (columns) and randomization of columns
(rows) within each superblock.
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Because of the structure of the experimental units, the conceptual response
my,,s of the unit at the intersection of the p-th row and the s-th column within

the h-th superblock can be suitably expressed in the form

Mpps = Mt (M= M. )+ (M= My )+ (M- My, )+ (Mpps— Mpp— My o+ my,..),
h= 1,2,...,R, Pi= 1,2,...,K1, S = 1,2,...,K2.

Then, the observed response of the (j,¢)-th unit of the i-th superblock, can be
written as:

Yijus) = 1 +Y(S) + p; + My + 0y + @y + £, E(yiue) = 0+ v(s) (14)
U= 1,2,...,7‘, J = 1,2,...,]61, t= 1,2,...,k2

where p = m.. denotes the mean, p; — denotes the effect of the i-th superblock,
m; and 0 stand for the effect of the j-th row and the ¢-th column within the i-th
superblock, respectively, and where ¢;j stands for the effect (error) of the (i,/,£)-th
unit.

The dispersion structure of model (14) is as follows:

Cov( Yy Yijes) = _ (15)
0‘2) + 02 +05 + 02 + 0%, =i, j=j', t=t,
02 + 02 - (K, 1)- of - (Kx-1)"'02, i j=j’, tet
=lo?- (K, - 1)! o} +09—(K1—1) i=t', j=,
oF - (Ky - 1)"02 - (Ky-1) 09+<K1 1) (Ky-1)"'02, i=i!, juf,
—(R-1)" 10 otherWISe,

where variance components denote respectively:

og = R‘IZ(mh.. -m..)* - the superblock variance,

0,2] = (RKI)‘IZZ(m;,p. - my,.)% - the row variance,

s = (RKy)'ZZ(m,,, - m,,..)? — the column variance,

oi = (RKIKZ)'IZZZ(thS = my,,. — My, + my.)* — the unit (error) variance.
Particular cases

Two particular cases, as usual, are of great interest.

1) R =, K; —»», K, -,

In this case the observations can be treated as uncorrelated. The obtained
linear model is classic when we consider a linear mixed model for a block design
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with nested rows and columns. So the above assumptions are written in the form
pi~ (0,05, n;~(0,03), 0;~(0,07) and gy~ (0,0p);

2)r=R, k1 =K,;, ky=K,.

In this situation the whole population of experimental units takes part in an

experiment.
For more details the reader is referred to Mejza and Mejza (1994).

6. Two-factor designs

6.0. Introduction

Let us consider a two-factor experiment in which factor A (or set of factors)
occurs on s levels Aj, A, - by A, and second factor, B, occurs on ¢ levels
By, By, ..., B;. Moreover, by treatment we will mean the treatment combination
AfBg, f=12,...,s, g=1,.2,...t, while by the effect of the i-th treatment we will

mean

T=0r+Pg+ (@Bl i=(f-Dt+g f=12,.5 g=12,...¢t, @1e)

where o, denotes the effect of the f-th level of the factor A, B, denotes the effect
of the g-th level of the factor B and (af);, stands for the interaction effect.

Let us note that the structure of random terms of the linear model does not
depend on the occurrence of treatments on the units. It means that our consider-
ations cover the three possible occurrence cases of the factor levels on the units,
i.e., incompleteness, completeness, and over completeness. Distinguishing the
above situations is not necessary in model building for observations. It is however
very important in the further analysis of data. It means that the problem should
be taken into account in the master plan D choice.

In this section of the paper only the situation in which a whole population of
units takes part in an experiment will be considered. It seems that the proposed
scheme of randomization is the most useful in applications.

Let v=st denote the number of treatments (treatment combinations) and let
b denote the number of blocks in the design. '

6.1. Classic factorial designs

By the classic factorial design we mean design in which all factor levels
combinations are treated as typical treatments and no special distinguishing of
some combination is taken into account during the randomization. Then applying
the scheme of randomization as described in sections 2 and 3, it is easy to obtain
the linear model for the observed response.



Modelling of experiments 93

6.2. Split-plot designs

Let us assume that a population of units is divided into & blocks in such a
way that each block contains k& whole-units and each whole-unit contains m
sub-units. It means that in our design there are n = bkm units.

Let levels of the factor A be the whole-unit treatments while levels of the
factor B be the sub-unit treatments.

A traditional split-plot design is such that the levels of factor A are arranged
on whole-units of a randomized complete block design and the levels of factor B
are arranged on the sub-units of a different randomized complete block design
within each level of A, provided the whole-units are treated as blocks. It means
that the number of the whole-units within each block should be equal to s (i.e.
k=s) and the number of sub-units within each whole-unit should be equal to ¢
(i.e. m=t).

In this paper we consider a general situation of the treatment combination
occurrence on the units. It means that the design can be called (with respect to
occurrence of treatments on the units) either incomplete, complete or over com-
plete.

Our model building is based on the three step randomization, i.e. randomiza-
tion of blocks, randomization of whole-units within each block randomization of
sub-units within each whole-unit of each block.

Let m,,, denote the conceptual response of the g-th sub-unit in the s-th
whole-unit of the w-th block.

Then applying the equality Mygg =M.+ (M, . —m.)+(my, —m,.)+

+ (myeq =~ My, ) and adopting the same approach as in previous sections we obtain

the linear model for the observed response in the form

Yrhjay = W + T(I') Pt My t Drhj + Erpjs E( yrhj(i)) =u+ ‘C(i), a7
r=12,.,b, h=12,...k j=12,...m, i=12,. v,

where w=m.. denotes the mean, t(i) denotes the effect of the i-th treatment
combination occurring on the (r,4,)-th unit, p, denotes the effect of the r-th block,
1,;, and ®,; stand for the effect (error) of the (r,h)-th whole-unit and (r,hy)-th
sub-unit, respectively.

The dispersion structure of model (17) is as follows:

0,2, + 0,21 + 03 o r=r', h=h', j=j',
2 2 -1 2 ’ oy op
0, + 0y, — (m— 1) Gys r=r'y h=h', j=j',
Cov(y,j,: 5 ) = b i (18)
(}'rh_](t) yrhj(t)) ﬁ_ (k 1)_ I‘=I", h#h’,
—(B-1)a> r=r,

where variance components denote respectively:
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ﬁ b '2(m,,. - m..)? — the block variance,
,2] = (bk)'=2(m,,. - m,,.)* — the whole-unit (error) variance,
o(P = (bkm)'lz}:Z(mwsq - m,,)? - the sub-unit (error) variance.

For more details the reader is referred to the following articles: Mejza and
Mejza (1984), Mejza (1985a, 1987).

6.3. Split-block designs

Let the experimental material be divided into b blocks and let each block be
additionally divided into two orthogonally disposed blocking systems, one called
rows and the other called columns. Each intersection of a row and a column
constitutes an (experimental) unit. Let k; denote the number of rows, k&, the
number of columns and let both of them be the same in all blocks. Furthermore,
let us assume that the levels of factor A occur on the rows whereas the levels of
factor B occur on the columns. Let as usual D denote the plan of our experiment.

In a classio (i.e. complete) case we have k; = s and k, = ¢ and each combination
of factors occurs one time in each block. Let m,,,, denote the conceptual response

of the unit being the intersection of the s-th row and g-th column in the w-th
block. Because of the experimental material structure we have equality

Moy ™= ML+ (M.~ )+ (=10, + (M= 0 ) F (Myeg= M Mg + m,.),
which implies the linear model for the observed response as:

Yrijey =M +T@) + P+ My + 0 + @i + 835, E(y56)) = n +70), (19
=02 90 B0 =s1s2 of Rosii=ils2, 2k Rianl s 2588 U

where p = m.. denotes the mean, p, denotes the effect of the r-th block, n,;, (0,
denote the random effects of the A-th row (j-th column) within the r-th block
and ¢,;; stands for the effect (error) of the (r,h,/)-th sub-unit.

The dispersion structure of the of model (19) is as follows:

Cov(ymigys YrnjGy) = (20)
0?, o+ oﬁ T oy 02 s T LS 5 T
§+02-(k2_1) ore—(k2—1) r=r', h=h', j=',
lo 2_(1«»,1 1y02 + of - (kl—l)‘ r=r', h=h', j=',
o2 (k-1 )" Z’—(kz—l)‘ ogt(ky-1 ,—1(k2_1) o, r=r', huh!, juj',
-(b-1)"a2, otherwise,

where variance components denote, respectively:
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o2 =b7"'Z(m,,. - m..)? - the block variance,

2

p

,2\ = (bky)'EZ(me - m,,.)? — the row variance,
o2 = (bky)™ 1ZZ:(m m,.)? — the column variance,
2

O, = (bk1kg) IZZZ(mwsq e T MRt )? — the unit (error) variance.

For more details the reader is referred to the following articles: Mejza 1. (1989),
Bhargava and Shah (1975).

6.4. Split-plot designs — whole-unit treatments in a row-column design

Let an experimental material be divided into %, rows and k; columns as in
row-column designs. Further, let all first order units (whole-units) formed at the
crosses of rows and columns be divided into k3 secondary units (sub-units). A
two-factor experiment is designed on this experimental material in such a way
that levels of the first factor (A) and second factor (B) are distributed on whole-
units and sub-units, respectively. This experimental design is referred to as a
row-column design with split units. There are practically no restrictions on the
distribution of factor A and B levels on the respective units in the considered
design.

The assignment of the master plan D to a given experimental material is as
follows: to each row and each column of the plan D a row and column of the
experimental material are randomly attributed. According to the plan, it is known
which one out of s levels of the factor A occurs on the whole-unit lying at the
crossing of the rows and columns. Likewise, from the plan D it is known which
kg out of ¢ levels of factor B occur on a given whole-unit. These levels are now
randomly allocated among its kg sub-units. All of the random assignments are
independent.

Because of the experimental material structure we have

Mysg=m_+ (my -m_)+(mg-m_)+ (mys-m g-m, +m ) + (mwsq_mws.)

which adopted in our approach generates the linear model for the observed
response in the form

Yrhjiy =R + T(l’) Pty t erh i Prij + Erpjs E( yrhj(i)) =u+ T(l) > (21)
r= 1,2,...,k1, h = 1,2,...,k2, J = 1,2,...,k3, e ].,2,...,U,

where p =m__denotes the mean, p, denotes the effect of the r-th row, 1, denotes
the effect of the h-th column, 0,;, denotes the effect (error) of the (,h) whole-unit
and @,;,; stands for the effect (error) of the (r,A,j)-th sub-unit.

The dispersion structure of model (21) is as follows:
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Cov(y,mjcys Yrnyey) = (22)
(6?2 +02+02+02+ a5k r=r'; h=h!, j=j',
p n 0 )
o2 + 02 + 0 - (kg-1)'02, r=r', h=h', j=
J 0,2, - (k2—1)'10,2] - (kz—l)'log, r=r', h=h',
~(k1-1)"'02 + 02 - (k1-1) a3, rer', h=h/,
~(k1=1)" 02 (ky-1) "2+ (k1 =1) " (ky-1)"0h, rer’, h=h,

where variance components denote respectively:
of, = k1'2(m,, -m_ ) — the row variance,

0;21 = k3'2Z(m .- m__)? — the column variance,
06 = (k1kg) "X (e, = My, — m, +m. ) — the whole-unit variance,
Ui = (k1k2k3)"1222(mwsq - My, )2 — the unit (error) variance.

For more details the reader is referred to Kachlicka and Mejza (1990).
6.5. Repeated row-column designs with split-units

Let, in this paragraph, the experimental material with the structure described
in § 6.4 be called a superblock. We assume here that the experimental material
contains % superblocks with k; rows, ky columns and k4 sub-units within each
whole-unit. Hence, an equal structure of the experimental material in each
superblock is required. Otherwise, no constraints are laid upon the distribution
of factors A and B levels in superblocks, which may be either equal or not. The
experimental design obtained in this way will be called a repeated row-column
design with split units. The allocation of factors A and B levels is performed
according to plan D. The way of assigning the theoretical plan D to a given
experimental material is defined by the randomization scheme of the experiment.
In this paragraph the randomization proceeds in four stages. In the first stage
superblocks are randomized, in the second and third — rows and columns, re-
spectively. The distribution of factor A levels on the whole-plots is obtained as a
result of these randomizations. Thereafter the distribution of factor B levels on
sub-units (independently on each whole-plot) is obtained in the fourth stage of
randomization.

Let m,,,, denote conceptual response of the p-th sub-unit in the (s,q) whole-
unit being intersection of the s-th row and g-th column in the w-th superblock.
Then, the conceptual response can be expressed as:

Myggp =M+ (mw 3 m) + (mws.._ mw) i (mw.q. i mw) +

(mwsq. - My, — mw.q. it mw) + (mwqu Ba mwsq.)-
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Applying the approach considered in this paper we obtain the linear model for
the observed response in the form

Yrhjiy = W+ TE) + P+ Mgy + O+ @i+ g + 8ty By i) = 1+ 76,
r=1,2,..ko, h=1,2,....ky, j=1,2,...ky, 1=1,2,....ks, i=1,2,...,0, (23)
where p =m.. denotes the mean, p, denotes the effect of the r-th superblock,
N (8,;) denote the effect of the A-th row (j-th column) within the r-th superblock,
@; stands for the effect (error) of the (4,j)-th whole-unit within the r-th super-

blocks and w,y,; denotes the sub-unit effect (error).
The dispersion structure of the of model (23) is as follows:

Cov( ¥rajigys Yrnjray) = (24)
,2, + 0121 +02+ oi of 02 r=r'; h=h', j=j', I=l',
0§ + o,z1 + cg + 0‘% - (k4 1)_ r=r', h=h', j5', l=l',
f, of - (kz—l) 09 - (kz—l) r=r', h=h', j=j’,
p—(kl—l) 0,] + 09 4 (kl—l) (P, r=r', h=h', j=j',
oﬁ_(k1-1)~lo§-(/ez_1)‘1o§+(k1_1)-_‘(k2-1)-103,, r=r', h=h', j=j’,
k—(k o 1)'10§ ’ r=r',

where variance components denote respectively:

p = kol}:(m L-m.. )2 — the superblock variance,
,2] = (koky) '=Z(m,,,. - m,,..)% — the rows within superblocks variance,

og = (koky)” ZZ(m - m,,..)? — the columns within superblocks variance,
2

= (kokiks) 1ZZZ(mwsq M= My + m...)? — the whole-unit (error) variance
and o2 = (k0k1k2/e3)'12222(mw3qp = Myeq. )2 — the sub-unit (error) variance.
For more details the reader is referred to Kachlicka and Mejza (1991).

7. Concluding remarks

The paper presents one of the possible approaches to model building. In this
approach the main role is played by the structure of the experimental units and
the scheme of the applied randomization. We do not discuss the importance and
the need of randomization. These problems are considered in many papers, for
example, Greenberg (1951), Harville (1975), Kempthorne (1977), Bailey (1981),
Thornet (1982), Folks (1984), Gehan (1987), Califski and Kageyama (1991), Kala
(1989, 1990, 1991).



98 S. Mejza

One problem is a way of obtaining the linear model but another problem is
its statistical analysis. For some linear models obtained there are no appropriate
statistical methods. Hence, in the modelling of experiments the problem of further
statistical analysis (estimation and inference) should be taken into account.
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O modelowaniu doswiadczen w naukach
przyrodniczych

Streszczenie

W pracy zajmujemy sie problemami modelowania doswiadczen jednoczynnikowych i
dwuczynnikowych zakladanych w ukladach blokowych. W przypadku ukladéw
jednoczynnikowych o strukturze blokowej, rozwazania dotyczg takich ukladéw jak:
uklad o blokach niekompletnych, zagniezdzony uklad o blokach niekompletnych, uktad
kolumnowo-wierszowy, uklad o blokach niekompletnych z zagniezdzonymi wierszami
1 kolumnami. W przypadku do$wiadczen dwuczynnikowych rozwazania ograniczamy
do klasycznego ukltadu dwuczynnikowego w blokach niekompletnych, uktadu split-plot
i uktadu split-block. W ostatnim przypadku rozwazane modele obejmujg zaréwno
klasyczne uklady kompletne jak i uklady niekompletne ze wzgledu na jeden lub oba
czynniki doSwiadczalne. Model obserwacji uzyskany w pracy wynika bezposrednio
z zastosowanego w do§wiadczeniu schematu randomizacyjnego, dokladnie opisanego
w pracy, oraz z pewnych zwykle przyjmowanych zaltozen. Podstawowe zalozenie
orzeka, ze obserwowana reakcja cechy jest suma trzech skladnikéw, to jest "plonu
zerowego", zwiazanego z jednostka doSwiadczalna, "czystego efektu" pochodzacego od
obiektu i "bledu technicznego", zwiazanego z pewnymi nieScistoSciami
w przeprowadzaniu do§wiadczenia jak i nieScisloSciami pomiarowymi. Praca ta ma
charakter pracy przegladowej. Stanowi ona pewne podsumowanie badan w tym
zakresie. Oznacza to, ze niektére fragmenty tej pracy zostaly czeSciowo opublikowane
w innych, wezeSniejszych pracach autora.

Stowa kluczowe: randomizacja, addytywnosé, budowanie modelu, uklady o
strukturze blokowej, do§wiadczenia czynnikowe.



